# 6.7 Graph Linear Inequalities in Lucu Variables F.a.1 Describe, recognize, interpret and translate graphical representations of mathematical and real-world phenomena on coordinate grids ... Before Nu graphed linear equations in two variables. Now Nu will graph linear inequalities in two variables. So you can analyze a music competition, as in Ex. 56.

#### **Key Vocabulary**

 linear inequality in two variables

• graph of an inequality in two variables A **linear inequality in two variables**, such as x - 3y < 6, is the result of replacing the = sign in a linear equation with  $<, \leq, >$ , or  $\geq$ . A **solution of an inequality in two variables** *x* and *y* is an ordered pair (*x*, *y*) that produces a true statement when the values of *x* and *y* are substituted into the inequality.

EXAMPLE 1 Standardized Test Practice

| <b>Which ordered</b> (0, 0) | pair is <i>not</i> a<br><b>B</b> (6, – | solution of $x - 3y \le 6$ ?         1) $\bigcirc$ (10, 3) $\bigcirc$ (-1, 2) |
|-----------------------------|----------------------------------------|-------------------------------------------------------------------------------|
| Solution                    |                                        |                                                                               |
| Check whether eac           | ch ordered pa                          | ir is a solution of the inequality.                                           |
| Test (0, 0): x              | $-3y \le 6$                            | Write inequality.                                                             |
| 0                           | 3( <b>0</b> ) ≤ 6                      | Substitute 0 for x and 0 for y.                                               |
|                             | 0≤6 ✓                                  | Simplify.                                                                     |
| Test (6, -1): x             | $-3y \le 6$                            | Write inequality.                                                             |
| <mark>6</mark> – 3          | $\mathbf{S}(-1) \leq 6$                | Substitute 6 for x and $-1$ for y.                                            |
|                             | 9≤6 ≯                                  | Simplify.                                                                     |

So, (0, 0) is a solution of  $x - 3y \le 6$  but (6, -1) is *not* a solution.

The correct answer is B. (A) (B) (C) (D)

1

GUIDED PRACTICE for Example 1

| Tell whether the ordered pair is a solution of $-x + 2y < 8$ . |                  |                  |  |
|----------------------------------------------------------------|------------------|------------------|--|
| <b>1.</b> (0, 0)                                               | <b>2.</b> (0, 4) | <b>3.</b> (3, 5) |  |

**GRAPH OF AN INEQUALITY** In a coordinate plane, the **graph of an inequality in two variables** is the set of points that represent all solutions of the inequality. The *boundary line* of a linear inequality divides the coordinate plane into two **half-planes**. Only one half-plane contains the points that represent the solutions of the inequality.

#### **KEY CONCEPT**

For Your Notebook

v > 4x

(0, 0)

2 1

#### Graphing a Linear Inequality in Two Variables

- **STEP 1** Graph the boundary line. Use a *dashed line* for < or >, and use a *solid line* for  $\le$  or  $\ge$ .
- *STEP 2* **Test** a point not on the boundary line by checking whether the ordered pair is a solution of the inequality.

#### **EXAMPLE 2** Graph a linear inequality in two variables

Graph the inequality y > 4x - 3.

#### Solution

**STEP 1** Graph the equation y = 4x - 3. The inequality is >, so use a dashed line.

**STEP 2** Test (0, 0) in y > 4x - 3.

 $0 \stackrel{?}{>} 4(0) - 3$ 

*STEP 3* Shade the half-plane that contains (0, 0), because (0, 0) is a solution of the inequality.



Graph the inequality  $x + 2y \le 0$ .

#### Solution

**STEP 1** Graph the equation x + 2y = 0. The inequality is  $\leq$ , so use a solid line.

**STEP 2** Test (1, 0) in  $x + 2y \le 0$ .

$$+ 2(0) \stackrel{f}{\leq} 0$$

 $1 \le 0 \times$ 

*STEP 3* **Shade** the half-plane that does not contain (1, 0), because (1, 0) is *not* a solution of the inequality.

1



**GUIDED PRACTICE** for Examples 2 and 3

**4.** Graph the inequality  $x + 3y \ge -1$ .

#### AVOID ERRORS

Be sure to test a point that is not on the boundary line. In Example 3, you can't test (0, 0) because it lies on the boundary line x + 2y = 0.

*STEP 3* **Shade** the half-plane containing the point if the ordered pair is a solution of the inequality. Shade the other half-plane if the ordered pair is *not* a solution.

**LINEAR INEQUALITIES IN ONE VARIABLE** The steps for graphing a linear inequality in two variables can be used to graph a linear inequality in one variable in a coordinate plane.

The boundary line for an inequality in one variable is either vertical or horizontal. When testing a point to determine which half-plane to shade, do the following:

- If an inequality has only the variable *x*, substitute the *x*-coordinate of the test point into the inequality.
- If an inequality has only the variable *y*, substitute the *y*-coordinate of the test point into the inequality.

### **EXAMPLE 4** Graph a linear inequality in one variable

#### Graph the inequality $y \ge -3$ .

#### Solution

- **STEP 1** Graph the equation y = -3. The inequality is  $\geq$ , so use a solid line.
- **STEP 2** Test (2, 0) in  $y \ge -3$ . You substitute only the *y*-coordinate, because the inequality does not have the variable *x*.

 $0 \ge -3$ 

*STEP 3* **Shade** the half-plane that contains (2, 0), because (2, 0) is a solution of the inequality.



### **EXAMPLE 5** Graph a linear inequality in one variable

#### Graph the inequality x < -1.

#### Solution

- **STEP 1** Graph the equation x = -1. The inequality is <, so use a dashed line.
- *STEP 2* **Test** (3, 0) in x < -1. You substitute only the *x*-coordinate, because the inequality does not have the variable *y*.

#### 3 < −1 ×

*STEP 3* **Shade** the half-plane that does *not* contain (3, 0), because (3, 0) is not a solution of the inequality.



Animated Algebra) at classzone.com

#### 1

#### **GUIDED PRACTICE** for Examples 4 and 5

#### Graph the inequality.

5. y > 1

**6.**  $y \le 3$ 

7. x < -2

#### EXAMPLE 6 Solve a multi-step problem

**JOB EARNINCS** You have two summer jobs at a youth center. You earn \$8 per hour teaching basketball and \$10 per hour teaching swimming. Let *x* represent the amount of time (in hours) you teach basketball each week, and let *y* represent the amount of time (in hours) you teach swimming each week. Your goal is to earn at least \$200 per week.

- Write an inequality that describes your goal in terms of *x* and *y*.
- Graph the inequality.
- Give three possible combinations of hours that will allow you to meet your goal.



#### Solution

*STEP 1* Write a verbal model. Then write an inequality.



Finally, shade the part of Quadrant I that does not contain (5, 5), because (5, 5) is not a solution of the inequality.

*STEP 3* **Choose** three points on the graph, such as (13, 12), (14, 10), and (16, 9). The table shows the total earnings for each combination of hours.

| Basketball time (hours)  | 13  | 14  | 16  |
|--------------------------|-----|-----|-----|
| Swimming time (hours)    | 12  | 10  | 9   |
| Total earnings (dollars) | 224 | 212 | 218 |

#### **GUIDED PRACTICE** for Example 6

8. WHAT IF? In Example 6, suppose that next summer you earn \$9 per hour teaching basketball and \$12.50 per hour teaching swimming. Write and graph an inequality that describes your goal. Then give three possible combinations of hours that will help you meet your goal.

#### **AVOID ERRORS**

The variables can't represent negative numbers. So, the graph of the inequality does not include points in Quadrants II, III, or IV.

# 6.7 EXERCISES

### **SKILL PRACTICE**

EXAMPLE 1

**EXAMPLES** 2, 3, 4, and 5 on pp. 406–407 for Exs. 16–38

on p. 405 for Exs. 3–15

- **1. VOCABULARY** Copy and complete: The ordered pair (2, -4) is  $a(n) \ge 0$  of 3x y > 7.
- 2. ★ WRITING *Describe* the difference between graphing a linear inequality in two variables and graphing a linear equation in two variables.

# **CHECKING SOLUTIONS** Tell whether the ordered pair is a solution of the inequality.

| <b>3.</b> $x + y < -4$ ; (0, 0)        | <b>4.</b> $x - y \le 5$ ; (8, 3)                       | <b>5.</b> $y - x > -2; (-1, -4)$             |
|----------------------------------------|--------------------------------------------------------|----------------------------------------------|
| <b>6.</b> $2x + 3y \ge 14$ ; (5, 2)    | 7. $4x - 7y > 28; (-2, 4)$                             | <b>8.</b> $-3y - 2x < 12; (5, -6)$           |
| <b>9.</b> $2.8x + 4.1y \le 1$ ; (0, 0) | <b>10.</b> $0.5y - 0.5x > 3.5$ ; (6, 2)                | <b>11.</b> $x \ge -3; (-4, 0)$               |
| <b>12.</b> $y \le 8; (-9, -7)$         | <b>13.</b> $\frac{3}{4}x - \frac{1}{3}y < 6; (-8, 12)$ | <b>14.</b> $\frac{2}{5}x + y \ge 2$ ; (1, 2) |
|                                        |                                                        |                                              |

**15. ★ MULTIPLE CHOICE** Which ordered pair is *not* a solution of x + 5y < 15? (A) (-1, -3) (B) (-1, 3) (C) (1, 3) (D) (3, 2)

**16. ★ MULTIPLE CHOICE** The graph of which inequality is shown?

| (A) $x + y \le -1$ | $(\textbf{B})  x + y \ge -1$ | • |
|--------------------|------------------------------|---|
| (c) $x - y \le -1$ | ( <b>b</b> ) $x - y \ge -1$  |   |
|                    |                              |   |

#### **GRAPHING INEQUALITIES** Graph the inequality.

| <b>17.</b> $y > x + 3$    | <b>18.</b> $y \le x - 2$         | <b>19.</b> $y < 3x + 5$                | <b>20.</b> $y \ge -2x + 8$               |
|---------------------------|----------------------------------|----------------------------------------|------------------------------------------|
| <b>21.</b> $x + y < -8$   | <b>22.</b> $x - y \le -11$       | <b>23.</b> $x + 8y > 16$               | <b>24.</b> $5x - y \ge 1$                |
| <b>25.</b> $2(x+2) > 7y$  | <b>26.</b> $y - 4 < x - 6$       | <b>27.</b> $-4y \le 16x$               | <b>28.</b> $6(2x) \ge -24y$              |
| <b>29.</b> $y < -3$       | <b>30.</b> $x \ge 5$             | <b>31.</b> $x > -2$                    | <b>32.</b> $y \le 4$                     |
| <b>33.</b> $3(x-2) > y+8$ | <b>34.</b> $x - 4 \le -2(y + 6)$ | <b>35.</b> $\frac{1}{2}(x+2) + 3y < 8$ | <b>36.</b> $2(x+1) \ge \frac{1}{4}y - 1$ |

**38.**  $x \le -3$ 

#### **ERROR ANALYSIS** Describe and correct the error in graphing the inequality.

**37.**  $2y - x \ge 2$ 





**39. ★** WRITING Can you use (0, 0) as a test point when graphing 2x > -5y? *Explain* your reasoning.

# **TRANSLATING SENTENCES** Write the verbal sentence as an inequality. Then graph the inequality.

- **40.** Four less than *x* is greater than or equal to *y*.
- **41.** The product of -2 and *y* is less than or equal to the sum of *x* and 6.
- **42.** The quotient of *y* and 2 is greater than the difference of 7 and *x*.
- **43.** The sum of *x* and the product of 4 and *y* is less than -3.

#### **USING A GRAPH** Write an inequality of the graph shown.



# **WRITING INEQUALITIES** Write an inequality whose graph contains only the points in the given quadrants.

47. Quadrants I and II

**48.** Quadrants II and III

**49.** Quadrants III and IV

50. Quadrants I and IV

**CHALLENGE** In Exercises 51 and 52, write and graph an inequality whose graph is described by the given information.

- **51.** The points (2, 5) and (-3, -5) lie on the boundary line. The points (6, 5) and (-2, -3) are solutions of the inequality.
- **52.** The points (-7, -16) and (1, 8) lie on the boundary line. The points (-7, 0) and (3, 14) are *not* solutions of the inequality.

### **PROBLEM SOLVING**

**EXAMPLE 6** on p. 408 for Exs. 53–57 **53. BOBSLEDS** In a two-man bobsled competition, the sum of the weight *x* (in pounds) of the bobsled and the combined weight *y* (in pounds) of the athletes must not exceed 860 pounds. Write and graph an inequality that describes the possible weights of the bobsled and the athletes. Identify and interpret one of the solutions.

**@HomeTutor** for problem solving help at classzone.com



**54. ELEVATORS** The number *y* of passengers riding an elevator can be no greater than the elevator's maximum weight capacity *x* (in pounds) divided by 150. Write and graph an inequality that relates the number of passengers to the maximum weight capacity. Identify and interpret one of the solutions.

@HomeTutor for problem solving help at classzone.com

= WORKED-OUT SOLUTIONS on p. WS1 STANDARDIZED TEST PRACTICE



- **55. WULTIPLE REPRESENTATIONS** You tutor Spanish for \$15 per hour and French for \$10 per hour. You want to earn at least \$100 per week.
  - **a. Writing an Inequality** Write an inequality that describes your goal in terms of hours spent tutoring Spanish and hours spent tutoring French.
  - **b.** Drawing a Graph Graph the inequality. Then give three possible combinations of hours that meet your goal.
  - **c. Making a Table** Make a table that gives the amount of money that you will earn for each combination of hours given in part (b).
- **56. ★ MULTIPLE CHOICE** To compete in a piano competition, you need to perform two musical pieces whose combined duration is no greater than 15 minutes. Which inequality describes the possible durations *x* and *y* (in minutes) of the pieces?

(A) x + y < 15 (B)  $x + y \le 15$  (C) x + y > 15 (D)  $x + y \ge 15$ 

57. MULTI-STEP PROBLEM You are making muffins and loaves of bread for a bake sale. You need  $\frac{1}{6}$  batch of batter per muffin and  $\frac{1}{2}$  batch of batter per loaf of bread. You have enough ingredients to make up to 12 batches of batter.

- **a.** Write and graph an inequality that describes the possible combinations of muffins m and loaves  $\ell$  of bread that you can make.
- **b.** You make 4 loaves of bread. What are the possible numbers of muffins that you can make?
- **58. NUTRITION** A nutritionist recommends that the fat calories *y* consumed per day should be at most 30% of the total calories *x* consumed per day.
  - **a.** Write and graph an inequality that relates the number of fat calories consumed to the total calories consumed.
  - **b.** Use the nutrition labels below. You normally consume 2000 calories per day. So far today you have eaten 6 crackers and 1 container of yogurt. What are the possible additional fat calories that you can consume today?



- **59. ★ SHORT RESPONSE** You need to bring a duffel and a bedroll for a trip in the mountains. The sum of the weight x (in pounds) of the duffel and the weight y (in pounds) of the bedroll cannot exceed 30 pounds.
  - **a. Graph and Apply** Write and graph a linear inequality that describes the possible weights of the duffel and bedroll. Then give three possible combinations of weights of the duffel and bedroll.
  - **b. Interpret** Are (0, 30) and (30, 0) solutions of the inequality in part (a)? Do these ordered pairs make sense for this situation? *Explain*.



8.  $\frac{5}{7}x < 10$ 

Graph the inequality. (p. 405)

7.  $x + y \ge 3$ 

**9.**  $2y - x \le 8$ 

# Wisconsin Mixed Review



## Lessons 6.5–6.7

- 1. **FOOD PREPARATION** You and your friends have picked 360 apples at an orchard and plan to use them to create apple pies and applesauce. You use 7 apples to make an apple pie and 5 apples to fill a jar of applesauce. Which inequality can you use to find the possible numbers *p* of apple pies and jars *s* of applesauce that you and your friends can make?
  - (A) 5p + 7s < 360
  - $(\textbf{B}) \quad 7p 5s \le 360$
  - **(C)**  $7p + 5s \le 360$
  - **D**  $360 7p \le 5s$
- 2. ELECTION POLL A poll taken before an election predicts that candidate A will receive 47 percent of the vote with an absolute deviation of at most 4 percent. Which of the following equations can you use to find the minimum and maximum percent of the vote that candidate A is predicted to receive in the election?
  - (A) |47 4| = x
  - **B** |47 x| = 4
  - **(C)** |x-4| = 47
  - **(D)** |47 + x| = 4
- **3. JOB TRAINING** You are scooping ice cream as part of your training to work at an ice cream shop. The weight of a scoop should be 4 ounces with an absolute deviation of at most 0.5 ounce. Your first 10 scoops have the following weights (in ounces): 3.8, 4.2, 3.9, 4.5, 3.7, 4.6, 4.1, 3.3, 4.3, and 4.2. What percent of your scoops meet the weight requirement?
  - **A** 60%
  - **B** 70%
  - **C** 80%
  - **D** 90%

- **4. INVESTING** An investor purchases shares of a stock for \$30 each and will sell them if the absolute deviation of the selling price from the purchase price is at least \$15. Which inequality can you use to find the possible prices *y* (in dollars) at which the shares will be sold?

  - **B**  $|y 30| \ge 15$
  - (c)  $|y 30| \le 15$
  - **D**  $|y 15| \le 30$
- **5. PRESENTATION** You will be making a presentation for your history class. Your teacher gives you a time limit of 15 minutes with an absolute deviation of at most 1.5 minutes. What is the minimum duration (in minutes) for your presentation?
  - (A) 13.5 minutes
  - **B** 15 minutes
  - **C** 16.5 minutes
  - D 22.5 minutes
- 6. **CONSTRUCTED RESPONSE** A tour operator recommends that a river rafter wear a protective suit under the temperature conditions described below.

Air Temperature + Water Temperature < 120°F Protective suit *recommended*.

Air Temperature + Water Temperature < 100°F Protective suit *required*.

Write and graph an inequality that describes the possible air temperatures and water temperatures for which a protective suit is recommended.

If the water temperature is 40°F, for which air temperatures is a protective suit recommended?

How would you change the graph in order to describe the situations in which a protective suit is required? *Explain* your answer.